Direkt zum Inhalt

Diese Website setzt ausschließlich technisch notwendige Cookies ein, die spätestens mit dem Schließen Ihres Browsers gelöscht werden. Wenn Sie mehr über Cookies erfahren möchten, klicken Sie bitte auf die Datenschutzerklärung.

DE EN
Anmelden
Logo, zur Startseite
  1. Sie sind hier:
  2. Artificially built Kondo chains with organic radicals on metallic surfaces: new model system of heavy fermion quantum criticality
...

    Datenpaket: Artificially built Kondo chains with organic radicals on metallic surfaces: new model system of heavy fermion quantum criticality

    • RADAR-Metadaten
    • Inhalt
    • Statistiken
    • Technische Metadaten
    Alternativer Identifier:
    -
    Verwandter Identifier:
    (Is Supplement To) 10.48550/arXiv.2408.01236 - DOI
    Ersteller/in:
    Danu, Bimla https://orcid.org/0000-0002-5210-1511 [University of Würzburg]
    Beitragende:
    (Researcher)
    Fakher Fakhry , Assaad https://orcid.org/0000-0002-3302-9243 [University of Würzburg]
    Titel:
    Artificially built Kondo chains with organic radicals on metallic surfaces: new model system of heavy fermion quantum criticality
    Weitere Titel:
    -
    Beschreibung:
    (Abstract) Heavy fermion quantum criticality is an extremely rich domain of research which represents a framework to understand strange metals as a consequence of a Kondo breakdown transition. Here we provide an experimental realization of such systems in terms of organic radicals on a metallic surface. The gr... Heavy fermion quantum criticality is an extremely rich domain of research which represents a framework to understand strange metals as a consequence of a Kondo breakdown transition. Here we provide an experimental realization of such systems in terms of organic radicals on a metallic surface. The ground state of organic radicals is a Kramer’s doublet that can be modeled by a spin ½ degree of freedom. Using on-surface synthesis and scanning tunneling microscopy (STM) tip manipulation, one can controllably engineer and characterize chains of organic radicals on a Au(111) surface. The spatial-resolved differential conductance reveals site-dependent low-energy excitations, which support the picture of emergent many-body Kondo physics. Using quantum Monte Carlo simulations, we show that a Kondo lattice model of spin chains on a metallic surface reproduces accurately the experimental results. This allows us to interpret the experimental results in terms of a heavy fermion metal, below the coherence temperature. We foresee that the tunability of these systems will pave the way to realize quantum simulators of heavy fermion criticality.

    Heavy fermion quantum criticality is an extremely rich domain of research which represents a framework to understand strange metals as a consequence of a Kondo breakdown transition. Here we provide an experimental realization of such systems in terms of organic radicals on a metallic surface. The ground state of organic radicals is a Kramer’s doublet that can be modeled by a spin ½ degree of freedom. Using on-surface synthesis and scanning tunneling microscopy (STM) tip manipulation, one can controllably engineer and characterize chains of organic radicals on a Au(111) surface. The spatial-resolved differential conductance reveals site-dependent low-energy excitations, which support the picture of emergent many-body Kondo physics. Using quantum Monte Carlo simulations, we show that a Kondo lattice model of spin chains on a metallic surface reproduces accurately the experimental results. This allows us to interpret the experimental results in terms of a heavy fermion metal, below the coherence temperature. We foresee that the tunability of these systems will pave the way to realize quantum simulators of heavy fermion criticality.

    Zeige alles

    (Technical Info) Please read the 'Readme.md' file.

    Please read the 'Readme.md' file.


    (Other) The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under NHR project 80069 provided by federal and Bavarian state authorities. NHR@FA... The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under NHR project 80069 provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) through grant 440719683. They also gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss- centre.eu) for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS46 at Jülich Supercomputing Centre (JSC). A.F.F acknowledges financial support from the German Research Foundation (DFG) under the grant AS 120/16-1 (Project number 493886309) that is part of the collaborative research project SFB Q-M&S funded by the Austrian Science Fund (FWF) F 86. BD acknowledges financial support from the German Research Foundation (DFG) under the grant DA 2805/2 (Project number 528834426). This research has been also funded by Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC 2147, Project No. 390858490).

    The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under NHR project 80069 provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) through grant 440719683. They also gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss- centre.eu) for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS46 at Jülich Supercomputing Centre (JSC). A.F.F acknowledges financial support from the German Research Foundation (DFG) under the grant AS 120/16-1 (Project number 493886309) that is part of the collaborative research project SFB Q-M&S funded by the Austrian Science Fund (FWF) F 86. BD acknowledges financial support from the German Research Foundation (DFG) under the grant DA 2805/2 (Project number 528834426). This research has been also funded by Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC 2147, Project No. 390858490).

    Zeige alles
    Schlagworte:
    Quantum Monte Carlo
    Heavy fermion systems
    Heavy fermion quantum criticality
    Organic radicals
    Scanning tunneling microscopy
    Kondo lattice model
    Magnetic Kondo nanostructure
    Zugehörige Informationen:
    -
    Sprache:
    Englisch
    Herausgeber/in:
    University of Würzburg
    Erstellungsjahr:
    2023-2024
    Fachgebiet:
    Physics
    Objekttyp:
    Dataset
    Datenquelle:
    -
    Verwendete Software:
    Software für Datenerhebung
    Software:
    Algorthims for Lattice Fermions (ALF) - 2.4
    Alternative Software:
    -
    Verwendete Software:
    Software für Datenbetrachtung
    Software:
    gnuplot - 5.4
    Alternative Software:
    -
    Datenverarbeitung:
    -
    Erscheinungsjahr:
    2025
    Rechteinhaber/in:
    Danu, Bimla https://orcid.org/0000-0002-5210-1511

    Assaad, Fakher Fakhry https://orcid.org/0000-0002-3302-9243
    Förderung:
    Deutsche Forschungsgemeinschaft - (Phase transitions beyond the Landau-Ginzburg-Wilson paradigm) 493886309
    Deutsche Forschungsgemeinschaft - (Field theories of Kondo-Heisenberg lattices: a quantum Monte Carlo study) 528834426
    Complexity and Topology in Quantum Matter - (EXC 2147: Complexity and Topology in Quantum Matter (CT.QMAT)) 390858490
    Zeige alles Zeige weniger
    Name Speichervolumen Metadaten Upload Aktion
    Status:
    Publiziert
    Eingestellt von:
    f5d242c09160de36a4907780838166e3
    Erstellt am:
    2024-11-11
    Archivierungsdatum:
    2025-02-14
    Archivgröße:
    13,2 MB
    Archiversteller:
    dd7b509482ad0a11773b217cbbcdf32f
    Archiv-Prüfsumme:
    ddeb35a2f99afc2381293bfcf306280f (MD5)
    Embargo-Zeitraum:
    -
    DOI: 10.58160/fk84q3eec0u5t081
    Publikationsdatum: 2025-02-14
    Datenpaket herunterladen
    Herunterladen (13,2 MB)

    Metadaten herunterladen
    Statistik
    0
    Views
    0
    Downloads
    Lizenz für das Datenpaket
    Dieses Werk ist lizenziert unter
    CC BY 4.0
    CC icon
    Datenpaket zitieren
    Danu, Bimla (2025): Artificially built Kondo chains with organic radicals on metallic surfaces: new model system of heavy fermion quantum criticality. University of Würzburg. DOI: 10.58160/fk84q3eec0u5t081
    • Über das Repository
    • Datenschutzerklärung
    • Nutzungsbedingungen
    • Impressum
    • Erklärung zur Barrierefreiheit
    powered by RADAR
    1.22.9 (f) / 1.16.2 (b) / 1.22.4 (i)

    §1 Erschöpfung des Nutzungsverhältnisses

    1. Das Nutzungsverhältnis zwischen Datennutzerinnen und Datennutzern und der JMU ist begrenzt auf den Download von Datenpaketen oder Metadaten. Die Nutzungsrechte an den Daten richten sich dabei nach den gewählten Lizenzbedingungen und weiteren Vorgaben der Datengeberinnen und Datengeber. Die JMU behält sich das Recht vor, die Nutzung des Repositoriums einzuschränken oder den Dienst einzustellen.
    2. Die JMU übernimmt keine Haftung oder Gewährleistung für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte.

    §2 Datenerhebung

    1. Personenbezogene Daten der Nutzerinnen und Nutzer werden nur erhoben, sofern dies für den Betrieb von WueData oder zur Authentifizierung notwendig ist.
    2. Zur statistischen Auswertung der Besucherzugriffe werden in anonymisierter Form Protokolldaten erhoben.
    3. Die Verarbeitung personenbezogener und statistischer Daten erfolgt gemäß DSGVO. Weitere Informationen finden Sie in der Datenschutzerklärung.

    §3 Kosten

    1. Für die Recherche in WueData und den Download von Datenpaketen fallen keine Kosten für die Datennutzerinnen und Datennutzer an.